A knot is called almost alternating if it has a diagram for which one crossing change results in an alternating diagram, but the knot is not alternating.

8_{20} |

11n_{95} is not almost alternating; see [2].

11n_{183} is almost alternating; see [3].

[1] Adams, C. et. al., "Almost alternating links," Topology and it Apps. 46 (1992) 151-165.

[2] Dasbach, O. T. and Lowrance, A. M., "Invariants for Turaev genus one links", Comm. Anal. Geom. 26 (2018), 1101-1124.

[3] Goda, H., Hirasawa, M. and Yamamoto, R., "Almost alternating diagrams and fibered links in S^3", Proc. London Math. Soc. (3) 83 (2001) 472-492.

[4] Jablan, S., "Almost alternating knot with 12 crossings and Turaev Genus", Arxiv preprint.