For knot K, a rational number p/q is a boundary slope if there exists a boundary incompressible surface in the knot complement having as boundary a set of parallel curves on the peripheral torus, each one representing p(meridian) + q(longitude).
The existence of a Seifert surface implies that 0 = 0/1.
As an example, the (2,3)-torus knot K has boundary slope 0. It lies on a torus T, and T - K is a boundary incompressible annulus having boundary two copies of a (6,1) curve. The full set of boundary slopes is {0,6). At the moment, the only knots for which KnotInfo provides boundary slopes are Montesinos knots, as described in the references.
The following list, provided by Nathen Dunfield, describes whether the given list is for the knot or its mirror image. "bs" = "boundary slope", "mirrored" means the data is for the reverse of the knot, and "symmetric" means that the data is symmetric. The data needs to be orientation corrected in the KnotInfo database.
3_1 K(1/3) bs ok
4_1 K(2/5) bs is symmetric
5_1 K(1/5) bs ok
5_2 K(3/7) bs ok
6_1 K(4/9) bs ok
6_2 K(4/11) bs ok
6_3 K(5/13) bs is symmetric
7_1 K(1/7) bs ok
7_2 K(5/11) bs ok
7_3 K(4/13) bs mirrored
7_4 K(4/15) bs mirrored
7_5 K(7/17) bs ok
7_6 K(7/19) bs ok
7_7 K(8/21) bs ok
8_1 K(6/13) bs ok
8_2 K(6/17) bs ok
8_3 K(4/17) bs is symmetric
8_4 K(5/19) bs mirrored
8_5 K(1/3;1/3;1/2) bs ok
8_6 K(10/23) bs ok
8_7 K(9/23) bs ok
8_8 K(9/25) bs ok
8_9 K(7/25) bs is symmetric
8_10 K(1/3;2/3;1/2) bs mirrored
8_11 K(10/27) bs ok
8_12 K(12/29) bs is symmetric
8_13 K(11/29) bs ok
8_14 K(12/31) bs ok
8_15 K(2/3;2/3;1/2) bs mirrored
8_19 K(1/3;1/3;-1/2) bs ok
8_20 K(1/3;2/3;-1/2) bs ok
8_21 K(2/3;2/3;-1/2) bs mirrored
9_1 K(1/9) bs ok
9_2 K(7/15) bs ok
9_3 K(6/19) bs mirrored
9_4 K(5/21) bs ok
9_5 K(6/23) bs mirrored
9_6 K(11/27) bs ok
9_7 K(13/29) bs ok
9_8 K(11/31) bs ok
9_9 K(9/31) bs ok
9_10 K(10/33) bs mirrored
9_11 K(14/33) bs ok
9_12 K(13/35) bs ok
9_13 K(10/37) bs mirrored
9_14 K(14/37) bs ok
9_15 K(16/39) bs ok
9_16 K(1/3;1/3;3/2) bs ok
9_17 K(14/39) bs ok
9_18 K(17/41) bs ok
9_19 K(16/41) bs ok
9_20 K(15/41) bs ok
9_21 K(18/43) bs ok
9_22 K(3/5;1/3;1/2) bs ok
9_23 K(19/45) bs ok
9_24 K(1/3;2/3;3/2) bs mirrored
9_25 K(2/5;2/3;1/2) bs ok, but so is mirror
9_26 K(18/47) bs ok
9_27 K(19/49) bs ok
9_28 K(2/3;2/3;3/2) bs mirrored
9_30 K(3/5;2/3;1/2) bs ok
9_31 K(21/55) bs ok
9_35 K(1/3;1/3;1/3) bs mirrored
9_36 K(2/5;1/3;1/2) bs mirrored
9_37 K(1/3;2/3;2/3) bs mirrored
9_42 K(2/5;1/3;-1/2) bs mirrored
9_43 K(3/5;1/3;-1/2) bs ok
9_44 K(2/5;2/3;-1/2) bs mirrored
9_45 K(3/5;2/3;-1/2) bs ok
9_46 K(1/3;1/3;-1/3) bs ok
9_48 K(2/3;2/3;-1/3) bs mirrored
10_1 K(8/17) bs ok
10_2 K(8/23) bs ok
10_3 K(6/25) bs ok
10_4 K(7/27) bs mirrored
10_5 K(13/33) bs ok
10_6 K(16/37) bs ok
10_7 K(16/43) bs ok
10_8 K(6/29) bs ok
10_9 K(11/39) bs mirrored
10_10 K(17/45) bs ok
10_11 K(13/43) bs ok
10_12 K(17/47) bs ok
10_13 K(22/53) bs ok
10_14 K(22/57) bs ok
10_15 K(19/43) bs ok
10_16 K(14/47) bs mirrored
10_17 K(9/41) bs is symmetric
10_18 K(23/55) bs ok
10_19 K(14/51) bs is symmetric
10_20 K(16/35) bs ok
10_21 K(16/45) bs ok
10_22 K(13/49) bs mirrored
10_23 K(23/59) bs ok
10_24 K(24/55) bs ok
10_25 K(24/65) bs ok
10_26 K(17/61) bs mirrored
10_27 K(27/71) bs ok
10_28 K(19/53) bs ok
10_29 K(26/63) bs ok
10_30 K(26/67) bs ok
10_31 K(25/57) bs ok
10_32 K(29/69) bs ok
10_33 K(18/65) bs is symmetric
10_34 K(13/37) bs ok
10_35 K(20/49) bs ok
10_36 K(20/51) bs ok
10_37 K(23/53) bs is symmetric
10_38 K(25/59) bs ok
10_39 K(22/61) bs ok
10_40 K(29/75) bs ok
10_41 K(26/71) bs ok, but so is mirror
10_42 K(31/81) bs is symmetric
10_43 K(27/73) bs is symmetric
10_44 K(30/79) bs ok
10_45 K(34/89) bs is symmetric
10_46 K(1/5;1/3;1/2) bs ok
10_47 K(1/5;2/3;1/2) bs mirrored
10_48 K(4/5;1/3;1/2) bs ok
10_49 K(4/5;2/3;1/2) bs mirrored
10_50 K(3/7;1/3;1/2) bs ok
10_51 K(3/7;2/3;1/2) bs mirrored
10_52 K(4/7;1/3;1/2) bs ok
10_53 K(4/7;2/3;1/2) bs mirrored
10_54 K(2/7;1/3;1/2) bs ok, but so is mirror
10_55 K(2/7;2/3;1/2) bs mirrored
10_56 K(5/7;1/3;1/2) bs ok
10_57 K(5/7;2/3;1/2) bs mirrored
10_58 K(2/5;2/5;1/2) bs ok, but so is mirror
10_59 K(2/5;3/5;1/2) bs ok
10_60 K(3/5;3/5;1/2) bs ok
10_61 K(1/4;1/3;1/3) bs ok
10_62 K(1/4;1/3;2/3) bs mirrored
10_63 K(1/4;2/3;2/3) bs mirrored
10_64 K(3/4;1/3;1/3) bs ok
10_65 K(3/4;1/3;2/3) bs mirrored
10_66 K(3/4;2/3;2/3) bs mirrored
10_67 K(2/5;1/3;2/3) bs mirrored
10_68 K(3/5;1/3;1/3) bs ok
10_69 K(3/5;2/3;2/3) bs mirrored
10_70 K(2/5;1/3;3/2) bs mirrored
10_71 K(2/5;2/3;3/2) bs ok, but so is mirror
10_72 K(3/5;1/3;3/2) bs ok
10_73 K(3/5;2/3;3/2) bs ok
10_74 K(1/3;1/3;5/3) bs mirrored
10_75 K(2/3;2/3;5/3) bs ok, but so is mirror
10_76 K(1/3;1/3;5/2) bs ok
10_77 K(1/3;2/3;5/2) bs mirrored
10_78 K(2/3;2/3;5/2) bs mirrored
10_124 K(1/5;1/3;-1/2) bs ok
10_125 K(1/5;2/3;-1/2) bs mirrored
10_126 K(4/5;1/3;-1/2) bs ok
10_127 K(4/5;2/3;-1/2) bs mirrored
10_128 K(3/7;1/3;-1/2) bs ok
10_129 K(3/7;2/3;-1/2) bs mirrored
10_130 K(4/7;1/3;-1/2) bs ok
10_131 K(4/7;2/3;-1/2) bs mirrored
10_132 K(2/7;1/3;-1/2) bs ok
10_133 K(2/7;2/3;-1/2) bs mirrored
10_134 K(5/7;1/3;-1/2) bs ok
10_135 K(5/7;2/3;-1/2) bs mirrored
10_136 K(2/5;2/5;-1/2) bs mirrored
10_137 K(2/5;3/5;-1/2) bs mirrored
10_138 K(3/5;3/5;-1/2) bs ok
10_139 K(1/4;1/3;-2/3) bs ok
10_140 K(1/4;1/3;-1/3) bs mirrored
10_141 K(1/4;2/3;-1/3) bs mirrored
10_142 K(3/4;1/3;-2/3) bs ok
10_143 K(3/4;1/3;-1/3) bs ok
10_144 K(3/4;2/3;-1/3) bs mirrored
10_145 K(2/5;1/3;-2/3) bs ok
10_146 K(2/5;2/3;-1/3) bs ok
10_147 K(3/5;1/3;-1/3) bs ok
[1] Dunfield, N., "A table of boundary slopes of Montesinos knots Topology," 40 (2001), 309-315
[2] Hatcher, A. and Oertel, U., "Boundary slopes for Montesinos knots," Topology 28 (1989), 453-480.