KnotInfo: Table of Knots
Search Results

Singleknot Search: 5_1

name:5_1
category:5
knot_atlas:5.1
alternating:Y
name_rank:4
dt_name:5a_2
dt_rank:5
dt_notation:[6, 8, 10, 2, 4]
classical_conway_name:5_1
conway_notation:[5]
two_bridge_notation:[5,1]
fibered:Y
gauss_notation:{-1, 2, -3, 4, -5, 1, -2, 3, -4, 5}
pd_notation:[[2,8,3,7],[4,10,5,9],[6,2,7,1],[8,4,9,3],[10,6,1,5]]
crossing_number:5
tetrahedral_census_name:[[2, 3], not hyperbolic, T(2,5)]
unknotting_number:2
three_genus:2
crosscap_number:1
bridge_index:2
braid_index:2
braid_length:5
braid_notation:{1,1,1,1,1}
signature:-4
nakanishi_index:1
super_bridge_index:4
thurston_bennequin_number:[3][-10]
arc_index:7
polygon_index:8
tunnel_number:1
morse_novikov_number:0
alexander_polynomial:1-t+t^2-t^3+t^4
alexander_polynomial_vector:{0, 4, 1, -1, 1, -1, 1}
jones_polynomial:t^2+ t^4-t^5+ t^6-t^7
jones_polynomial_vector:{2, 7, 1, 0, 1, -1, 1, -1}
conway_polynomial:1+3*z^2+z^4
conway_polynomial_vector:{0, 2, 1, 3, 1}
homfly_polynomial_vector:{0, 2, {2, 3, 3, -2}, {2, 3, 4, -1}, {2, 2, 1}}
kauffman_polynomial:(2*a^(-6)+3*a^(-4))*z^(0)+(a^(-9)-a^(-7)-2*a^(-5))*z^(1)+(a^(-8)-3*a^(-6)-4*a^(-4))*z^(2)+(a^(-7)+a^(-5))*z^(3)+(a^(-6)+a^(-4))*z^(4)
kauffman_polynomial_vector:{0, 4, {-6, -4, 2, 0, 3}, {-9, -5, 1, 0, -1, 0, -2}, {-8, -4, 1, 0, -3, 0, -4}, {-7, -5, 1, 0, 1}, {-6, -4, 1, 0, 1}}
a_polynomial:table of A-polys
smooth_four_genus:2
topological_four_genus:2
smooth_4d_crosscap_number:1
topological_4d_crosscap_number:1
smooth_concordance_genus:2
topological_concordance_genus:NULL
smooth_concordance_crosscap_number:NULL
topological_concordance_crosscap_number:NULL
algebraic_concordance_order:infty
smooth_concordance_order:infty
topological_concordance_order:infty
ribbon:NULL
determinant:5
seifert_matrix:[[ -1, -1, 0, -1], [ 0, -1, 0, 0], [ -1, -1, -1, -1], [ 0, -1, 0, -1]]
rasmussen_invariant:4
ozsvath_szabo_tau_invariant:2
volume:0
maximum_cusp_volume:Not Hyperbolic
longitude_translation:Not Hyperbolic
meridian_translation:Not Hyperbolic
longitude_length:Not Hyperbolic
meridian_length:Not Hyperbolic
other_short_geodesics:NULL
symmetry_type:reversible
full_symmetry_group:Z2
chern_simons_invariant:Not Hyperbolic
volume_imaginary_part:Not Hyperbolic
arf_invariant:1
turaev_genus:0
signature_function:{{0.2, {0, -1, -2}, 1}, {0.6, {-2, -3, -4}, 1}}
monodromy:abcd
small_large:Small
positive_braid:Y
positive:Y
strongly_quasipositive:Y
quasipositive:Y
positive_braid_notation:{1,1,1,1,1}
positive_pd_notation:{{2,8,3,7},{4,10,5,9},{6,2,7,1},{8,4,9,3},{10,6,1,5}}
strongly_quasipositive_braid_notation:{1,1,1,1,1}
quasipositive_braid_notation:{1,1,1,1,1}
fd_clasp_number:2
width:8
torsion_numbers:{{2,{5}}, {3,{1}}, {4,{5}}, {5,{2,2,2,2}}, {6,{5}}, {7,{1}}, {8,{5}}, {9,{1}}}
td_clasp_number:2
l_space:Yes
nu:{2,-2}
epsilon:1
quasi_alternating:Y
almost_alternating:N
adequate:Y
montesinos_notation:K(1/5)
boundary_slopes:{0,10}
pretzel_notation:P(-1,-1,-1,-1,-1)
double_slice_genus:4
unknotting_number_algebraic:2
khovanov_unreduced_integral_polynomial:q^(3) + q^(5) + t^(2) q^(7) + t^(3) q^(11) + t^(4) q^(11) + t^(5) q^(15) + t^(3) q^(9) T^(2) + t^(5) q^(13) T^(2)
khovanov_unreduced_integral_vector:[[0, 1, 0, 3], [0, 1, 0, 5], [0, 1, 2, 7], [0, 1, 3, 11], [0, 1, 4, 11], [0, 1, 5, 15], [2, 1, 3, 9], [2, 1, 5, 13]]
khovanov_reduced_integral_polynomial:q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14)
khovanov_reduced_integral_vector:[[0, 1, 0, 4], [0, 1, 2, 8], [0, 1, 3, 10], [0, 1, 4, 12], [0, 1, 5, 14]]
khovanov_reduced_rational_polynomial:q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14)
khovanov_reduced_rational_vector:[[1, 1, 0, 4], [1, 1, 2, 8], [1, 1, 3, 10], [1, 1, 4, 12], [1, 1, 5, 14]]
khovanov_reduced_mod2_polynomial:q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14)
khovanov_reduced_mod2_vector:[[2, 1, 0, 4], [2, 1, 2, 8], [2, 1, 3, 10], [2, 1, 4, 12], [2, 1, 5, 14]]
khovanov_odd_integral_polynomial:q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14)
khovanov_odd_integral_vector:[[0, 1, 0, 4], [0, 1, 2, 8], [0, 1, 3, 10], [0, 1, 4, 12], [0, 1, 5, 14]]
khovanov_odd_rational_polynomial:q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14)
khovanov_odd_rational_vector:[[1, 1, 0, 4], [1, 1, 2, 8], [1, 1, 3, 10], [1, 1, 4, 12], [1, 1, 5, 14]]
khovanov_odd_mod2_polynomial:q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14)
khovanov_odd_mod2_vector:[[2, 1, 0, 4], [2, 1, 2, 8], [2, 1, 3, 10], [2, 1, 4, 12], [2, 1, 5, 14]]
hfk_polynomial:1a^(-2)m^(-4)+ 1a^(-1)m^(-3)+ 1a^(0)m^(-2)+ 1a^(1)m^(-1)+ 1a^(2)m^(0)
hfk_polynomial_vector:[1,-2,-4;1,-1,-3;1,0,-2;1,1,-1;1,2,0]
mosaic_tile_number:{ 5 , 17 }
ropelength:47.2016
homfly_polynomial:(3*v^4-2*v^6)+(4*v^4-v^6)*z^2+v^4*z^4
grid_notation:[[1,1],[1,3],[2,2],[2,4],[3,3],[3,5],[4,4],[4,6],[5,5],[5,7],[6,1],[6,6],[7,2],[7,7]]
almost_strongly_qp:N
almost_strongly_qp_braid:NULL
ribbon_number:D.N.E.
geometric_type:torus knot T(2,5)
cosmetic_crossing:N

Return to KnotInfo main page