name: | 5_1
|
category: | 5 |
knot_atlas: | 5.1
|
alternating: | Y |
name_rank: | 4 |
dt_name: | 5a_2 |
dt_rank: | 5 |
dt_notation: | [6, 8, 10, 2, 4] |
classical_conway_name: | 5_1 |
conway_notation: | [5] |
two_bridge_notation: | [5,1] |
fibered: | Y |
gauss_notation: | {-1, 2, -3, 4, -5, 1, -2, 3, -4, 5} |
pd_notation: | [[2,8,3,7],[4,10,5,9],[6,2,7,1],[8,4,9,3],[10,6,1,5]] |
crossing_number: | 5 |
tetrahedral_census_name: | [[2, 3], not hyperbolic, T(2,5)] |
unknotting_number: | 2 |
three_genus: | 2 |
crosscap_number: | 1 |
bridge_index: | 2 |
braid_index: | 2 |
braid_length: | 5 |
braid_notation: | {1,1,1,1,1} |
signature: | -4 |
nakanishi_index: | 1 |
super_bridge_index: | 4 |
thurston_bennequin_number: | [3][-10] |
arc_index: | 7 |
polygon_index: | 8 |
tunnel_number: | 1 |
morse_novikov_number: | 0 |
alexander_polynomial: | 1-t+t^2-t^3+t^4 |
alexander_polynomial_vector: | {0, 4, 1, -1, 1, -1, 1} |
jones_polynomial: | t^2+ t^4-t^5+ t^6-t^7 |
jones_polynomial_vector: | {2, 7, 1, 0, 1, -1, 1, -1} |
conway_polynomial: | 1+3*z^2+z^4 |
conway_polynomial_vector: | {0, 2, 1, 3, 1} |
homfly_polynomial_vector: | {0, 2, {2, 3, 3, -2}, {2, 3, 4, -1}, {2, 2, 1}} |
kauffman_polynomial: | (2*a^(-6)+3*a^(-4))*z^(0)+(a^(-9)-a^(-7)-2*a^(-5))*z^(1)+(a^(-8)-3*a^(-6)-4*a^(-4))*z^(2)+(a^(-7)+a^(-5))*z^(3)+(a^(-6)+a^(-4))*z^(4) |
kauffman_polynomial_vector: | {0, 4, {-6, -4, 2, 0, 3}, {-9, -5, 1, 0, -1, 0, -2}, {-8, -4, 1, 0, -3, 0, -4}, {-7, -5, 1, 0, 1}, {-6, -4, 1, 0, 1}} |
a_polynomial: | table of A-polys
|
smooth_four_genus: | 2 |
topological_four_genus: | 2 |
smooth_4d_crosscap_number: | 1 |
topological_4d_crosscap_number: | 1 |
smooth_concordance_genus: | 2 |
topological_concordance_genus: | NULL |
smooth_concordance_crosscap_number: | NULL |
topological_concordance_crosscap_number: | NULL |
algebraic_concordance_order: | infty |
smooth_concordance_order: | infty |
topological_concordance_order: | infty |
ribbon: | NULL |
determinant: | 5 |
seifert_matrix: | [[ -1, -1, 0, -1], [ 0, -1, 0, 0], [ -1, -1, -1, -1], [ 0, -1, 0, -1]] |
rasmussen_invariant: | 4 |
ozsvath_szabo_tau_invariant: | 2 |
volume: | 0 |
maximum_cusp_volume: | Not Hyperbolic |
longitude_translation: | Not Hyperbolic |
meridian_translation: | Not Hyperbolic |
longitude_length: | Not Hyperbolic |
meridian_length: | Not Hyperbolic |
other_short_geodesics: | NULL |
symmetry_type: | reversible |
full_symmetry_group: | Z2 |
chern_simons_invariant: | Not Hyperbolic |
volume_imaginary_part: | Not Hyperbolic |
arf_invariant: | 1 |
turaev_genus: | 0 |
signature_function: | {{0.2, {0, -1, -2}, 1}, {0.6, {-2, -3, -4}, 1}}
|
monodromy: | abcd |
small_large: | Small |
positive_braid: | Y |
positive: | Y |
strongly_quasipositive: | Y |
quasipositive: | Y |
positive_braid_notation: | {1,1,1,1,1} |
positive_pd_notation: | {{2,8,3,7},{4,10,5,9},{6,2,7,1},{8,4,9,3},{10,6,1,5}} |
strongly_quasipositive_braid_notation: | {1,1,1,1,1} |
quasipositive_braid_notation: | {1,1,1,1,1} |
fd_clasp_number: | 2 |
width: | 8 |
torsion_numbers: | {{2,{5}}, {3,{1}}, {4,{5}}, {5,{2,2,2,2}}, {6,{5}}, {7,{1}}, {8,{5}}, {9,{1}}} |
td_clasp_number: | 2 |
l_space: | Yes |
nu: | {2,-2} |
epsilon: | 1 |
quasi_alternating: | Y |
almost_alternating: | N |
adequate: | Y |
montesinos_notation: | K(1/5) |
boundary_slopes: | {0,10} |
pretzel_notation: | P(-1,-1,-1,-1,-1) |
double_slice_genus: | 4 |
unknotting_number_algebraic: | 2 |
khovanov_unreduced_integral_polynomial: | q^(3) + q^(5) + t^(2) q^(7) + t^(3) q^(11) + t^(4) q^(11) + t^(5) q^(15) + t^(3) q^(9) T^(2) + t^(5) q^(13) T^(2) |
khovanov_unreduced_integral_vector: | [[0, 1, 0, 3], [0, 1, 0, 5], [0, 1, 2, 7], [0, 1, 3, 11], [0, 1, 4, 11], [0, 1, 5, 15], [2, 1, 3, 9], [2, 1, 5, 13]] |
khovanov_reduced_integral_polynomial: | q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14) |
khovanov_reduced_integral_vector: | [[0, 1, 0, 4], [0, 1, 2, 8], [0, 1, 3, 10], [0, 1, 4, 12], [0, 1, 5, 14]] |
khovanov_reduced_rational_polynomial: | q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14) |
khovanov_reduced_rational_vector: | [[1, 1, 0, 4], [1, 1, 2, 8], [1, 1, 3, 10], [1, 1, 4, 12], [1, 1, 5, 14]] |
khovanov_reduced_mod2_polynomial: | q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14) |
khovanov_reduced_mod2_vector: | [[2, 1, 0, 4], [2, 1, 2, 8], [2, 1, 3, 10], [2, 1, 4, 12], [2, 1, 5, 14]] |
khovanov_odd_integral_polynomial: | q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14) |
khovanov_odd_integral_vector: | [[0, 1, 0, 4], [0, 1, 2, 8], [0, 1, 3, 10], [0, 1, 4, 12], [0, 1, 5, 14]] |
khovanov_odd_rational_polynomial: | q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14) |
khovanov_odd_rational_vector: | [[1, 1, 0, 4], [1, 1, 2, 8], [1, 1, 3, 10], [1, 1, 4, 12], [1, 1, 5, 14]] |
khovanov_odd_mod2_polynomial: | q^(4) + t^(2) q^(8) + t^(3) q^(10) + t^(4) q^(12) + t^(5) q^(14) |
khovanov_odd_mod2_vector: | [[2, 1, 0, 4], [2, 1, 2, 8], [2, 1, 3, 10], [2, 1, 4, 12], [2, 1, 5, 14]] |
hfk_polynomial: | 1a^(-2)m^(-4)+ 1a^(-1)m^(-3)+ 1a^(0)m^(-2)+ 1a^(1)m^(-1)+ 1a^(2)m^(0) |
hfk_polynomial_vector: | [1,-2,-4;1,-1,-3;1,0,-2;1,1,-1;1,2,0] |
mosaic_tile_number: | { 5 , 17 } |
ropelength: | 47.2016 |
homfly_polynomial: | (3*v^4-2*v^6)+(4*v^4-v^6)*z^2+v^4*z^4 |
grid_notation: | [[1,1],[1,3],[2,2],[2,4],[3,3],[3,5],[4,4],[4,6],[5,5],[5,7],[6,1],[6,6],[7,2],[7,7]] |
almost_strongly_qp: | N |
almost_strongly_qp_braid: | NULL |
ribbon_number: | D.N.E. |
geometric_type: | torus knot T(2,5) |
cosmetic_crossing: | N |